

WHITEPAPER

Models or Mayhem?

How Application

Security will become

Cybersecurity’s Grand

Master

Page 2 of 18

Abstract

Computer security teams organize themselves according to function. In one common

pattern, application security is separated from functions like cryptography, incident

management, operations, compliance. In some organizations, application security

teams burn most of their hours in patch management. They may check for

misconfigurations, check compliance boxes. But the ubiquity and pervasiveness of

software will likely reshape traditional cybersecurity swim lanes. Nine questions are

posed which are intended to assess the capabilities of cybersecurity teams. Depending

on how these questions are answered, in information technology are identified which

suggest that AppSec teams will find themselves the highest-regarded among all

cybersecurity teams.

Toppling the Stack

Software’s layer cake continues its decades-long steady march toward complexity,

differentiation, and specialization. Code production has always been a mix of cut-and-

paste, design patterns, even trial and error. Any two developers tasked with solving the

same problem produce different code. Any two code reviewers will take different amounts

of time to review code written by any two developers.

This is not new. What’s new is the “software-ification” of more and more aspects of

information technology. In one extreme case, consider the Google Data Center, where its

Jupiter and Orion software gives high granularity configurability. Software-based tooling

enables Google engineers to “. . . shift moveable compute tasks between different data

centers, based on regional hourly carbon-free energy availability” said Ross Koningstein,

co-founder of Google’s Carbon-Intelligent Computing project.

In short, Google engineers created a software-based IT fabric. Most developers used to

draw a bright line at the “hardware” level, requiring service tickets to be issued to

infrastructure teams to deploy, for instance, server or service account assets needed to

run applications. “IT Administrator” was a specific role in the industry. But now, in many

settings, that software fabric now goes deeper and broader; great swaths of

infrastructure tooling can be exposed to code. “IT Administrator” employment is in

decline, while developer talent remains in high demand.

For security teams, whether these trends are regarded as good or bad is debatable, but

they are clearly irrevocable. New attack surfaces will emerge. More and more

configuration settings leave underlying assets accidentally unprotected. Visibility and

Page 3 of 18

understanding of the deeper-broader stack – the suite of interconnected components

needed to run an application or tool -- is essential. This perspective is on display in

publications like New Stack https://thenewstack.io/ and lightweight quasi-registries like

StackShare.

StackShare users identify software components -- and these are high level components

– deployed in applications. The list of components long and growing.

https://thenewstack.io/

Page 4 of 18

Screenshot from StackShare, 2021

“Cloud native” is a trend in software engineering that leverages cloud computing which

emphasizes scalability and composable services, typically using public cloud services

and often extensively incorporating open-source projects. Trends in the cloud native

movement suggest that this already long list of stack components will continue to grow.

The resulting complexity is part of what fuels the benefits associated with cloud native

design patterns: resilience, scalability, isolated states, elasticity and “loose-coupledness“

(Fehling et al., and Kratzke et al.)

Left-Shift

Because of these and other trends, much of cybersecurity is already a logical subset of

software engineering. The so-called Left Shift movement (see https://devopedia.org/shift-left)

moves engagement of software engineering practitioners – to earlier stages of the

development process. Left Shift has moved the focus toward nonfunctional requirements

such as observability, telemetry, resilience, and security are integrated into planned

builds. With Left Shift, as Devopedia’s author notes:

Page 5 of 18

Shift Left doesn't mean "shifting" the position of a task within a process

flow. It also doesn't imply that no testing is done just before a release.

should be seen as "spreading" the task and its concerns to all stages of

the process flow. It's about continuous involvement and feedback.

Where security was once left to “software engineering education” and late-stage testing,

Left Shift distributes security concerns throughout build and test processes.

Continuous Integration / Continuous Deployment (CI/CD) is a relatively recent practice

of more frequent, increasingly automated software production and deployment. When

using CI/CD methods, developers must also design test harnesses which will enable

testers access to developer artifacts, and where possible, enable test automation. Left

Shift for security teams is directly analogous to test engineering obligations. The Left Shift

trend highlights overlapping areas of responsibility, notably for penetration testing, code

review, compliance with approved stack and repository components and instrumentation

for Security Information and Event Management (SIEM) visibility.

These changes have been incremental but have accelerated with the cloud native

movement. Not surprisingly, security teams have seen the number and heterogeneity of

components and technologies increase.

Lines of Evidence for the Ascendancy of AppSec

How extensive are these trends and what do they mean for information security teams?

Supporting evidence for the pervasiveness of this transformation comes from multiple

sources. It’s not a coordinated transformation with an agreed-upon Gartner / Forrester

calling card (e.g., “zero trust”). Instead, there are transformations across a broad front.

The table below lists attack vectors involved in nine information technology domains.

Page 6 of 18

EVIDENCE DOMAIN SAMPLE ATTACK VECTOR

Microservices Shodan, Git repo search for API’s; GitHub residual code
snips & secrets. APIs unprotected by Captcha or input
checking (recent SYF incident***)

DevOps Brand and typosquatting of Maven & Jenkins plugins

Software defined networks Attacks on software-defined network (SDN) controls
(One analyst categorizes 8 other types of SDN attacks);
use of service mesh e.g., Istio for defense; Google Data
Center Jupiter and Orion

Left-shift test methods Insecure continuous deployment and integration
pipelines due to accidental secrets disclosure

Agile and SRE Secure Scrum; SRE to AppSec Engineering skill
enrichment

Cloud Native, Kubernetes Attacks on Docker Daemon ports; Kubernetes
Attack/Defense analysis

Infrastructure as Code CloudSploit scanning of CloudFormation

GitHub & “Repo Reliance” Solarwinds exploit; dependency com attacks

Streaming services (e.g., Spark, Kafka) Unsafe deserialization; RCE Apache Spark REST API;
unsecured access to Kafka metadata

For more details on these attack vectors, see “AppSec Attack Vector References” below.

Nine Questions

Cybersecurity teams which believe they can simply perform vulnerability scans and call

it a day are doing worthwhile and nontrivial work but missing a big part of the

application security picture.

1. Can you test what you can’t understand? What if the software is performed a

complex biomedical process with someone’s life on the line?

2. Do you have access to experts at each software abstraction layer? If not, how

can you identify a proper configuration from a malicious one?

3. Have you leveraged automation for assurance, health as well as penetration

testing? To automate, you must produce code, either through low code tools, AI

or traditional programming languages.

4. Are your risk and trust levels explicit? In building most applications, components

will be drawn from multiple sources. Some sources, such as internally verified

reusable libraries may be highly trusted, whereas open- source components with

Page 7 of 18

few recent contributions or contributor might be less trusted. Vendor-supplied

software is often somewhere in the middle.

5. Have you leveraged AI, including stack and domain knowledge for the

application, to help manage application complexity? AI can enable domain

experts to participate in application assurance, identify risks, implement new

countermeasures.

6. Are you prepared for the specialization paradox? Specialists will be needed to

secure each black box, even as the number of black boxes increases. Staffing

can’t be indefinitely augmented to include every specialization.

7. Have you identified and instrumented the policy decision points (PDPs) where

security controls, such as access and logging, can be implemented? System

complexity can multiply PDP’s at a terrific pace.

8. Are security principles fully distributed through development, test, deployment,

and production monitoring? The principle of zero trust has shifted security

reliance from end points, but has yet to fully encompass the software

development life cycle.

9. How are you keeping developer, test, and infrastructure teams abreast of the

latest open-source tools, security frameworks, and standards? Projects like

OpenTelemetry and Kubernetes are changing both the attack surface and the

available countermeasures.

Mayhem Management

There’s widespread concern over these challenges to application security, as shown in

this recent survey.

Page 8 of 18

Application Security Testing Tool Inhibitors (451 Research, 2019)

Industry voices echo the worry. Let’s listen in.

● “We need to reimagine all of our security testing techniques so that they make

sense in a continuous environment. We also need our security experts to become

coaches and toolsmiths1 rather than the ones to chase down every vulnerability --

because that will never scale” (Williams, 2014).

● “If every time you’re building some new microservice, you have to think about all

of those concerns about security, where you’re going to host it, what’s the IAM

user and role that you need access to, what other services can it talk to—If

developers need to figure all that stuff out every time, then you’re going to have a

real scaling challenge” (Sargent, 2021).

● “Like in the equivalent of it takes a village, it takes a team to keep a microservice

healthy, to upgrade it to make sure it’s checking in on its dependencies, on its

rituals, around things like reliability and SLO,” Mike Tria, head of platform services

at Atlassian recently told SD Times. “So, I think the good practices [folks] have a

team [working] on it. For example, Atlassian has about 3,000 developers and

roughly 1,400 microservices. Assuming teams of five to 10 developers, this works

1 Brooks, F. P. (1996). The Computer Scientist as Toolsmith II. Commun. ACM, 39(3),
61–68. https://doi.org/10.1145/227234.227243

https://urldefense.com/v3/__https:/doi.org/10.1145/227234.227243__;!!LwfAUzH5jmI!07czw4yV5eR03Vb08KcJLJ1uwfc8nxV53Oqhzpv4zsKxPyUhZjb-ECJek2JXfOBrjg$

Page 9 of 18

out to every team owning two or three microservices, on average . . . “ (Sargent,

2021).

● “. . . There is a real cost to this continuous widening of the base of knowledge a

developer has to have to remain relevant. One of today’s buzzwords is “full-stack

developer”. Which sounds good, but there’s a little guy in the back of my mind

screaming “You mean I have to know Gradle internals and ListView failure modes

and NSManagedObject quirks and Ember containers and the Actor model and

what interface{} means in Go, and Docker support variation in Cloud providers?”

(Bray, 2014).

The developer concerns aired by these industry voices correspond directly to the

concerns of security engineers. Some want to place the onus of creating secure

software on developer. Not only has that not worked, but in an era of highly specialized,

component-based development practices, it can’t scale. Just building the test

harnesses is several steps beyond what most application developers can manage.

Simplification is Not the Future, or Why AI

Just as all products and services are increasingly software enabled, designed or

managed, securing cyberspace is increasingly tied to securing that touch on all facets of

IT.

In part, the relative importance of bug bounty programs reflects the greater importance

of application security. Technologists with specialized skills to identify and test

vulnerabilities may not be available, even when best build or deployment practices are

followed. Surveillance, health checks, test probes, log analysis -- each of these can

require considerable specialization: tools, test environments and expertise.

To address this complexity, software technologists -- developers, test, quality, and

security engineers -- must work with high levels of abstraction. Abstractions are a force

multiplier; by using models and other constructs, they enable limited resources to

accomplish more. For security teams, abstractions also enable DevSecOps and

automation, key to prompt response to a greater diversity of threats, as well as greater

variety of alerts from layered defenses.

For instance, consider the emerging security models that were identified in 2015 by

Firestone. Each of the models depicted can be complex, requiring a dynamic mix of

supporting infrastructure, rich metadata, domain-specific awareness, and talent.

Page 10 of 18

Information Security Models (Sandhu, 2009)

It’s also argued that models are essential to left-shifted testing. The approach depicted

by Firestone shows how models can inform the full range of application build, test and

operations. Security is a fabric that must be draped over each of these processes.

Page 11 of 18

Model-based Shift Left Testing, Figure 5. (Firestone, 2015)

Even the mere interpretation of myriad alerts emitted by complex applications is

challenging. Is that alert a problem that security should address or an event that should

be processed by a domain specialist? Or both?

This challenge is depicted in a MITRE analysis (Obrst, 2016). This analysis, in part,

identified the need for automated, knowledge-based reasoning within and across

applications to assist in securing systems.

Page 12 of 18

Trends in Application Semantics: Tighter Coupling, Explicitness
(Adapted from Obrst, 2016)

As a result of this gradually evolving understanding – that alerts, events, “data” must be

anchored in frameworks that enable automated reasoning – some projects report

success in building security automation processes with deeper awareness of

applications.

Page 13 of 18

Ontology-based Security Analytics (Riesco, and Villagra, 2019)

In a demonstration by Riesco and Villagra, the processing begins with an application

context where Policy Decision Points (PDP) exist, such as an ETL operation into a data

lake, a user web form login, or an attempt to connect an API end point. Policy declarations

can be represented in eXtensible Access Control Markup Language (XACML), processed,

then moved to a risk engine to further decision-making.

A risk engine can do more than grant or deny access; armed with additional domain-

specific knowledge, it can require additional authentication, send notifications, check for

special circumstances (such as pandemic-related exceptions). It can launch

coordinating events, such as machine learning to detect unusual behavior or fraud

scoring using an enterprise model. In this project, the additional domain awareness is

enabled through the SPARQL Protocol And RDF Query Language (SPARQL), a SQL-like

semantic web language which consults knowledge structures. The knowledge structures

can be assembled using the humble building blocks of key-value pairs.2

What’s the underlying challenge? Costa et al. (2018) argued:

“Cyberspace is a highly dynamic man-made domain with a high degree

of uncertainty and incomplete data which must be transformed into

2 Key-value pairs are assembled into a database-like structure called an RDF triple, subject / predicate /
object. In MongoDB, the native document key-value pattern is mapped to an RDF format through a
plugin.

Page 14 of 18

knowledge to support precise and predictable cyber effects estimation.

Current systems have to rely on human subject matter experts (SMEs)

for most tasks, rendering the cyber asset planning process too time

consuming and therefore operationally ineffective.”

Researchers in the cybersecurity ontology community believe that by supplementing

current cybersecurity systems with automated reasoning, some of these concerns can

mitigated. Toward this end, MITRE has sponsored a community effort, the Unified

Cybersecurity Ontology (UCO) https://github.com/Ebiquity/Unified-Cybersecurity-Ontology. At the least,

such tools can improve human-machine collaborations through knowledge-based

processing of alerts, countermeasures, threat models and adversary tactics.

Future Implications

This survey of application security covers important trends but leaves still other topics

unmentioned.

 Not addressed, for instance, is the importance of data science for security analytics, or

the emergence of machine learning models in tools such as Exabeam and Crowdstrike --

models whose training sets, capabilities and limitations may not be fully visible to or

understood by security teams. But even in those omissions the importance of a model-

based understanding becomes clear. Application security teams must partner with model

owners. Future work will consist of tasks such as Hardening R, reviewing Scikit-Learn

script libraries, or implementing data controls for TensorFlow.

In the game of chess with adversaries, AppSec teams need to strive for grand master

status. AppSec is increasingly the superset above other cybersecurity specializations. It’s

all about the code, and that code will have to be defended if the incentives – like

ransomware -- line up to attract adversaries. Security teams which cultivate minimal

knowledge of diverse, complex applications are inviting attacks by more sophisticated

adversaries whose developer skills will be weaponized.

References

R. Sandhu, "The PEI framework for application-centric security," 2009 5th International

Conference on Collaborative Computing: Networking, Applications and Worksharing,

2009, pp. 1-5, doi: 10.4108/ICST.COLLABORATECOM2009.8382.

https://github.com/Ebiquity/Unified-Cybersecurity-Ontology

Page 15 of 18

Firesmith, Donald, “Four Types of Left Shift Testing,” Software Engineering Institute Blog,

CMU, 2015-03-23, https://insights.sei.cmu.edu/blog/four-types-of-shift-left-testing/,

accessed 2021-08-14.

Smith, Larry (September 2001). "Shift-Left Testing". Dr. Dobb's Journal. 26 (9): 56, 62.

Devopedia. 2021. "Shift Left." Version 5, June 28. Accessed 2021-09-09.

https://devopedia.org/shift-left

Riesco, R., & Villagrá, V. A. (2019). Leveraging cyber threat intelligence for a dynamic risk

framework: Automation by using a semantic reasoner and a new combination of

standards (STIXTM, SWRL and OWL). International Journal of Information Security, 18(6).

https://doi.org/10.1007/s10207-019-00433-2

F. Fischer et al., "Stack Overflow Considered Harmful? The Impact of Copy & Paste on

Android Application Security," 2017 IEEE Symposium on Security and Privacy (SP), 2017,

pp. 121-136, doi: 10.1109/SP.2017.31.

Obrst, L. “The Ontology Spectrum & the Range of Semantic Models,” MITRE Corporation,

Information Semantics Group, 2016.

K. A. Torkura, M. I. H. Sukmana, F. Cheng and C. Meinel, "Leveraging Cloud Native

Design Patterns for Security-as-a-Service Applications," 2017 IEEE International

Conference on Smart Cloud (SmartCloud), 2017, pp. 90-97, doi:

10.1109/SmartCloud.2017.21.

C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, “Cloud application

architecture patterns”, in Cloud Computing Patterns, Springer, 2014, pp. 151– 238

N. Kratzke and P.-C. Quint, “Understanding cloud native applications after 10 years of

cloud computing: a systematic mapping study”, Journal of Systems and Software, 2017.

Brooks, F. P. (1996). The Computer Scientist as Toolsmith II. Commun. ACM, 39(3), 61–

68. https://doi.org/10.1145/227234.227243, accessed 2021-10-13.

Williams, Jeff. “The Staggering Complexity of Application Security,” in Dark Reading, 10

November 2014, https://www.darkreading.com/application-security/the-staggering-

complexity-of-application-security, accessed 2021-08-15.

https://insights.sei.cmu.edu/blog/four-types-of-shift-left-testing/
https://doi.org/10.1145/227234.227243
https://www.darkreading.com/application-security/the-staggering-complexity-of-application-security
https://www.darkreading.com/application-security/the-staggering-complexity-of-application-security

Page 16 of 18

451 Research, “Addressing Complexity and Expertise in Application Security Testing,” 26

October, 2020, https://info.whitehatsec.com/rs/675-YBI-

674/images/451_Advisory_BIB_WhiteHat.pdf, accessed 2021-08-15.

Sargent, Jenna. “Microservices at scale: A complexity management issue,” in SD Times,

2 July 2021, https://sdtimes.com/microservices/microservices-at-scale-a-complexity-

management-issue/, accessed 2021-08-15.

Bray, Tim. “Discouraged Developer,” blog post, 17 July 2021,

https://www.tbray.org/ongoing/When/201x/2014/07/17/Discouraged-Developer,

accessed 2021-08-15.

Cassel, David. “Where is the complexity 0f modern software coming from?” in The New

Stack, 18 October 2020, https://thenewstack.io/where-is-the-complexity-of-modern-

software-coming-from/

Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K. Smith, Collin

Winter, and Emerson Murphy-Hill. 2018. Advantages and disadvantages of a monolithic

repository: a case study at google. In Proceedings of the 40th International Conference

on Software Engineering: Software Engineering in Practice (ICSE-SEIP '18). Association

for Computing Machinery, New York, NY, USA, 225–234.

DOI:https://doi.org/10.1145/3183519.3183550

Andonov, N. “WordPress Malware Camouflaged as Code, Wordfence post, 13 August

2021 https://www.wordfence.com/blog/2021/08/wordpress-malware-camouflaged-

as-code

Killian, C., Ferguson, A.D., Gribble S., et al. “Orion: Google’s Software Defined

Networking Control Plane,” 18th USENIX Symposium on Networked Systems Design and

Implementation, 5 May 2021, https://youtu.be/W_tSOj6hDKU, accessed 2021-08-16.

Singh, A., Ong, J., Agarwal, A., Anderson, G., Armistead, A., Bannon, R., Boving, S.,

Desai, G., Felderman, B., Germano, P., Kanagala, A., Provost, J., Simmons, J., Tanda, E.,

Wanderer, J., Hölzle, U., Stuart, S., Vahdat, A. Jupiter rising: A decade of clos topologies

and centralized control in Google's datacenter network. In Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication (2015), ACM, 183197.

https://info.whitehatsec.com/rs/675-YBI-674/images/451_Advisory_BIB_WhiteHat.pdf
https://info.whitehatsec.com/rs/675-YBI-674/images/451_Advisory_BIB_WhiteHat.pdf
https://sdtimes.com/microservices/microservices-at-scale-a-complexity-management-issue/
https://sdtimes.com/microservices/microservices-at-scale-a-complexity-management-issue/
https://www.tbray.org/ongoing/When/201x/2014/07/17/Discouraged-Developer
https://thenewstack.io/where-is-the-complexity-of-modern-software-coming-from/
https://thenewstack.io/where-is-the-complexity-of-modern-software-coming-from/
https://doi.org/10.1145/3183519.3183550
https://www.wordfence.com/blog/2021/08/wordpress-malware-camouflaged-as-code
https://www.wordfence.com/blog/2021/08/wordpress-malware-camouflaged-as-code
https://youtu.be/W_tSOj6hDKU

Page 17 of 18

Haranas, M. Google’s Data Centers To Use ‘Carbon-Intelligent Computing’, CRN, 19

May 2021, accessed 2021-08-15. https://www.crn.com/news/data-center/google-s-

data-centers-to-use-carbon-intelligent-computing-

Attack Vector references

https://blog.sonatype.com/malware-removed-from-maven-central

https://owasp.org/www-pdf-archive/Microservice_Security.pdf Unsafe deserialization

https://www.hardening-security.com/vulnerability/cve-2020-9480 (Apache Spark

exemplar)

https://alibaba-cloud.medium.com/alibaba-cloud-security-team-discovers-apache-

spark-rest-api-remote-code-execution-rce-exploit-a5fdb8fbd173 Spark RCE REST API

https://opsmatters.com/videos/cloudsploit-aws-cloudformation-security-scanner-

demo

https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/ (SDN

attacks)

https://thenewstack.io/the-biggest-security-risks-lurking-in-your-ci-cd-pipeline/ CI/CD

risks

https://www.semanticscholar.org/paper/Secure-Scrum%3A-Development-of-Secure-

Software-with-Pohl-Hof/ece4559a2c0b15aa8fe57297482a22a961bc4ccf Secure Scrum

https://breanneboland.com/blog/2020/01/27/how-an-sre-became-an-application-

security-engineer-and-you-can-too/

https://portswigger.net/daily-swig/open-source-ecosystem-ripe-for-dependency-

confusion-attacks-research-finds

https://www.inguardians.com/wp-content/uploads/2021/06/WWHF-Kubernetes-

Attack-and-Defense-RealGenius.pdf

https://docs.cloudera.com/runtime/7.2.9/kafka-securing/topics/kafka-secure-

deltokens-hardening.html

https://www.crn.com/news/data-center/google-s-data-centers-to-use-carbon-intelligent-computing-
https://www.crn.com/news/data-center/google-s-data-centers-to-use-carbon-intelligent-computing-
https://blog.sonatype.com/malware-removed-from-maven-central
https://owasp.org/www-pdf-archive/Microservice_Security.pdf
https://www.hardening-security.com/vulnerability/cve-2020-9480
https://alibaba-cloud.medium.com/alibaba-cloud-security-team-discovers-apache-spark-rest-api-remote-code-execution-rce-exploit-a5fdb8fbd173
https://alibaba-cloud.medium.com/alibaba-cloud-security-team-discovers-apache-spark-rest-api-remote-code-execution-rce-exploit-a5fdb8fbd173
https://opsmatters.com/videos/cloudsploit-aws-cloudformation-security-scanner-demo
https://opsmatters.com/videos/cloudsploit-aws-cloudformation-security-scanner-demo
https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/
https://thenewstack.io/the-biggest-security-risks-lurking-in-your-ci-cd-pipeline/
https://www.semanticscholar.org/paper/Secure-Scrum%3A-Development-of-Secure-Software-with-Pohl-Hof/ece4559a2c0b15aa8fe57297482a22a961bc4ccf
https://www.semanticscholar.org/paper/Secure-Scrum%3A-Development-of-Secure-Software-with-Pohl-Hof/ece4559a2c0b15aa8fe57297482a22a961bc4ccf
https://breanneboland.com/blog/2020/01/27/how-an-sre-became-an-application-security-engineer-and-you-can-too/
https://breanneboland.com/blog/2020/01/27/how-an-sre-became-an-application-security-engineer-and-you-can-too/
https://portswigger.net/daily-swig/open-source-ecosystem-ripe-for-dependency-confusion-attacks-research-finds
https://portswigger.net/daily-swig/open-source-ecosystem-ripe-for-dependency-confusion-attacks-research-finds
https://www.inguardians.com/wp-content/uploads/2021/06/WWHF-Kubernetes-Attack-and-Defense-RealGenius.pdf
https://www.inguardians.com/wp-content/uploads/2021/06/WWHF-Kubernetes-Attack-and-Defense-RealGenius.pdf
https://docs.cloudera.com/runtime/7.2.9/kafka-securing/topics/kafka-secure-deltokens-hardening.html
https://docs.cloudera.com/runtime/7.2.9/kafka-securing/topics/kafka-secure-deltokens-hardening.html

Page 18 of 18

